Respuesta :

Answer:

[tex]x=\frac{83}{50}[/tex]

Step-by-step explanation:

we know that

If the three points are collinear

then

[tex]m_A_B=m_A_C[/tex]

we have

A (1, 2/3), B (x, -4/5), and C (-1/2, 4)

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

step 1

Find the slope AB

we have

[tex]A(1,\frac{2}{3}),B(x,-\frac{4}{5})[/tex]

substitute in the formula

[tex]m_A_B=\frac{-\frac{4}{5}-\frac{2}{3}}{x-1}[/tex]

[tex]m_A_B=\frac{\frac{-12-10}{15}}{x-1}[/tex]

[tex]m_A_B=-\frac{22}{15(x-1)}[/tex]

step 2

Find the slope AC

we have

[tex]A(1,\frac{2}{3}),C(-\frac{1}{2},4)[/tex]

substitute in the formula

[tex]m_A_C=\frac{4-\frac{2}{3}}{-\frac{1}{2}-1}[/tex]

[tex]m_A_C=\frac{\frac{10}{3}}{-\frac{3}{2}}[/tex]

[tex]m_A_C=-\frac{20}{9}[/tex]

step 3

Equate the slopes

[tex]m_A_B=m_A_C[/tex]

[tex]-\frac{22}{15(x-1)}=-\frac{20}{9}[/tex]

solve for x

[tex]15(x-1)20=22(9)[/tex]

[tex]300x-300=198[/tex]

[tex]300x=198+300[/tex]

[tex]300x=498[/tex]

[tex]x=\frac{498}{300}[/tex]

simplify

[tex]x=\frac{83}{50}[/tex]