Respuesta :
Answer : The value of [tex]K_{eq}[/tex] is, 11.2
The value of [tex]\Delta G_{rxn}[/tex] is -9.04 kJ/mol
Explanation :
The relation between the equilibrium constant and standard Gibbs free energy is:
[tex]\Delta G^o=-RT\times \ln K_{eq}[/tex]
where,
[tex]\Delta G^o[/tex] = standard Gibbs free energy = -5.980 kJ/mol = -5980 J/mol
R = gas constant = 8.314 J/K.mol
T = temperature = [tex]25^oC=273+25=298K[/tex]
[tex]K_{eq}[/tex] = equilibrium constant = ?
Now put all the given values in the above formula, we get:
[tex]\Delta G^o=-RT\times \ln K_{eq}[/tex]
[tex]-5980J/mol=-(8.314J/K.mol)\times (298K)\times \ln K_{eq}[/tex]
[tex]K_{eq}=11.2[/tex]
Thus, the value of [tex]K_{eq}[/tex] is, 11.2
Now we have to calculate the [tex]\Delta G_{rxn}[/tex].
The formula used for [tex]\Delta G_{rxn}[/tex] is:
The given reaction is:
[tex]A(aq)\rightleftharpoons B(aq)[/tex]
[tex]\Delta G_{rxn}=\Delta G^o+RT\ln Q[/tex]
[tex]\Delta G_{rxn}=\Delta G^o+RT\ln \frac{[B]}{[A]}[/tex] ............(1)
where,
[tex]\Delta G_{rxn}[/tex] = Gibbs free energy for the reaction = ?
[tex]\Delta G_^o[/tex] = standard Gibbs free energy = -30.5 kJ/mol
R = gas constant = [tex]8.314\times 10^{-3}kJ/mole.K[/tex]
T = temperature = [tex]37.0^oC=273+37.0=310K[/tex]
Q = reaction quotient
[A] = concentration of A = 1.8 M
[B] = concentration of B = 0.55 M
Now put all the given values in the above formula 1, we get:
[tex]\Delta G_{rxn}=(-5980J/mol)+[(8.314J/mole.K)\times (310K)\times \ln (\frac{0.55}{1.8})[/tex]
[tex]\Delta G_{rxn}=-9035.75J/mol=-9.04kJ/mol[/tex]
Therefore, the value of [tex]\Delta G_{rxn}[/tex] is -9.04 kJ/mol
The equilibrium constant for the reaction at 25 °C, [tex]K_{eq}[/tex] is 11.2.
ΔG for the reaction at body temperature (37.0 °C) is -9.04 kJ/mol.
Relation between equilibrium constant and standard Gibbs free energy:
[tex]\triangle G^o= -RT*lnK_{eq}[/tex]
where,
[tex]\triangle G ^o[/tex] = standard Gibbs free energy = -5.980 kJ/mol = -5980 J/mol
R = gas constant = 8.314 J/K.mol
T = temperature = 298K
[tex]K_{eq}[/tex] = equilibrium constant = ?
→ Calculation for [tex]K_{eq}[/tex] :
Now, substituting the values in the above formula:
[tex]\triangle G^o= -RT*lnK_{eq}\\\\-5980J/mol=-(8.314J/K.mol)*(298K)* lnK_{eq}\\\\K_{eq}=11.2[/tex]
Thus, the value of [tex]K_{eq}[/tex] is 11.2.
→ Calculation for [tex]\triangle G_{rxn}[/tex]:
Chemical reaction:
A(aq) ⇌B(aq)
The formula used is:
[tex]\triangle G_{rxn}=\traingle G^o+RT lnQ\\\\\triangle G_{rxn}=\traingle G^o+RT ln\frac{[B]}{[A]}[/tex]
where,
- [tex]\triangle G_{rxn}[/tex] = Gibbs free energy for the reaction = ?
- [tex]\triangle G^o[/tex] = standard Gibbs free energy = -30.5 kJ/mol
- R = gas constant = 8.314 J/K.mol
- T = temperature = 310 K
- Q = reaction quotient
- [A] = concentration of A = 1.8 M
- [B] = concentration of B = 0.55 M
On substituting the values in the above formula:
[tex]\triangle G_{rxn}=\traingle G^o+RT ln\frac{[B]}{[A]}\\\\\triangle G_{rxn}=(-5980J/mol)+[(8.314J/mole.K)*(310K)*ln\frac{0.55}{1.8}] \\\\\triangle G_{rxn}=-9035.75J/mole=-9.04kJ/mol[/tex]
Therefore, the value of [tex]\triangle G_{rxn}[/tex] is -9.04 kJ/mol.
Find more information about Gibbs free energy here:
brainly.com/question/10012881