Respuesta :
Answer:
24.07415 rpm
Explanation:
[tex]\mu[/tex] = Coefficient of friction = 0.63
v = Velocity
d = Diameter = 4.9 m
r = Radius = [tex]\frac{d}{2}=\frac{4.9}{2}=2.45\ m[/tex]
m = Mass
g = Acceleration due to gravity = 9.81 m/s²
Here the frictional force balances the rider's weight
[tex]f=\mu F_n[/tex]
The centripetal force balances the weight of the person
[tex]\mu m\frac{v^2}{r}=mg\\\Rightarrow \mu \frac{v^2}{r}=g\\\Rightarrow v=\sqrt{\frac{gr}{\mu}}\\\Rightarrow v=\sqrt{\frac{9.81\times 2.45}{0.63}}\\\Rightarrow v=6.17656\ m/s[/tex]
Velocity is given by
[tex]v=\omega r\\\Rightarrow \omega=\frac{v}{r}\\\Rightarrow \omega=\frac{6.17656}{2.45}\\\Rightarrow \omega=2.52104\ rad/s[/tex]
Converting to rpm
[tex]2.52104\times \frac{60}{2\pi}=24.07415\ rpm[/tex]
The minimum angular speed for which the ride is safe is 24.07415 rpm
The minimum angular speed for which the ride will be safe is ≈ 24.07 rpm
Given data :
Diameter of hollow steel cylinder = 4.9 m. Radius ( r ) = 4.9 / 2 = 2.45 m
coefficient of friction of clothing ( [tex]\alpha[/tex] ) = 0.63
g = 9.81 m/s²
First step : Determine the velocity using the centripetal forces relation
v = [tex]\sqrt{\frac{g*r}{\alpha } }[/tex] ----- ( 1 )
where ; g = 9.81 m/s, r = 2.45 m , [tex]\alpha = 0.63[/tex]
Insert values into equation 1
V = [√( 9.81 * 2.45 )/0.63 ]
= 6.177 m/s
Next : convert velocity to rad/sec ( angular velocity )
V = ω*r
∴ ω = V / r
= 6.177 / 2.45 = 2.52 rad/sec
Final step: The minimum angular speed expressed in rpm
angular velocity ( ω ) * [tex]\frac{60}{2\pi }[/tex]
= 2.52 * [tex]\frac{60}{2\pi }[/tex] ≈ 24.07 rpm
Hence the minimum angular speed in rpm = 24.07 rpm.
Learn more : https://brainly.com/question/24336703