Answer:
27 / (4x⁶y⁸)
Step-by-step explanation:
[tex]\frac{4(3x^{2}y^{4})^{3}}{(2x^{3}y^{5})^{4}}[/tex]
When raised to a power, multiply the exponents.
[tex]\frac{4(3^{3}x^{6}y^{12})}{2^{4}x^{12}y^{20}} \\\\\frac{2^{2}3^{3}x^{6}y^{12}}{2^{4}x^{12}y^{20}}[/tex]
When dividing, subtract the exponents.
[tex]2^{2-4}3^{3}x^{6-12}y^{12-20}\\2^{-2}3^{3}x^{-6}y^{-8}[/tex]
Move negative exponents to the denominator.
[tex]\frac{3^{3}}{2^{2}x^{6}y^{8}}\\\frac{27}{4x^{6}y^{8}}[/tex]