Respuesta :

Answer:

The distance between A and B is l(AB) = 13 units

Step-by-step explanation:

Given:

let,

A ≡ ( x1, y1 ) ≡ ( 0, 12 )

B ≡ ( x2, y2 ) ≡ ( 5, 0 )

To Find:

Length AB = ?

Solution:

Distance Formula for the distance between the two points ( x1, y1 ) and ( x2, y2 ) we have,

[tex]l(AB) = \sqrt{((x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2} )}[/tex]

On substituting the above values we will get,

[tex]l(AB) = \sqrt{((5-0)^{2}+(0-12)^{2} )}\\l(AB)=\sqrt{(5^{2} +(-12)^{2} } \\l(AB)=\sqrt{(25+144)}\\ l(AB)=\sqrt{169} \\l(AB)=13\ unit[/tex]

Therefore the distance between A and B is l(AB) = 13 units