Consider the force field and circle defined below.

F(x, y) = x2 i + xy j
x2 + y2 = 9

(a) Find the work done by the force field on a particle that moves once around the circle oriented in the clockwise direction.

Respuesta :

By Green's theorem,

[tex]\displaystyle\int_{x^2+y^2=9}\vec F(x,y)\cdot\mathrm d\vec r=\iint_D\left(\frac{\partial(xy)}{\partial x}-\frac{\partial(x^2)}{\partial y}\right)\,\mathrm dx\,\mathrm dy=\iint_Dy\,\mathrm dx\,\mathrm dy[/tex]

where [tex]C[/tex] is the circle [tex]x^2+y^2=9[/tex] and [tex]D[/tex] is the interior of [tex]C[/tex], or the disk [tex]x^2+y^2\le1[/tex].

Convert to polar coordinates, taking

[tex]\begin{cases}x=r\cos\theta\\y=r\sin\theta\end{cases}\implies\mathrm dx\,\mathrm dy=r\,\mathrm dr\,\mathrm d\theta[/tex]

Then the work done by [tex]\vec F[/tex] on the particle is

[tex]\displaystyle\iint_Dy\,\mathrm dx\,\mathrm dy=\int_0^{2\pi}\int_0^3(r\sin\theta)r\,\mathrm dr\,\mathrm d\theta=\left(\int_0^{2\pi}\sin\theta\,\mathrm d\theta\right)\left(\int_0^3r^2\,\mathrm dr\right)=\boxed0[/tex]