Answer:
ANS : .Energy spent on spraying =[tex]4.3542*10^{-4}J[/tex]
Explanation:
Given:
Thus, volume is conserved.
i.e ,
[tex]\frac{4}{3} \pi R_{o}^{3} = 10^{6}*\frac{4}{3} \pi R_{n}^{3}\\R_{n}=\frac{R_{o}}{10^{2}} = \frac{1cm}{100} = 0.01 cm[/tex]
Where ,
Initial energy [tex]E_{i} = T*A_{i}\\= 0.0035 * 4 *\pi *0.01^{2}\\=4.398*10^{-6}J[/tex]
Final energy [tex]E_{f}=10^{6}*T*A_{f}\\=10^{6}*0.0035*4*\pi *(0.0001)^2\\=4.39823*10^{-4}[/tex]
∴ .Energy spent on spraying = [tex]=E_{f}-E{i}\\=(439.823-4.39823)*10^{-6}\\=4.3542*10^{-4}J[/tex]
ANS : .Energy spent on spraying =[tex]4.3542*10^{-4}J[/tex]