Bonnie sits on the outer rim of a merry-go-round, and Jill sits midway between the center and the rim. The merrygo-round makes one complete revolution every 2 seconds. Jill's linear velocity is:

a. four times Bonnie's.
b. one-quarter of Bonnie's.
c. the same as Bonnie's.
d. twice Bonnie's.
e. half of Bonnie's.

Respuesta :

Answer:

e. half of Bonnie's.

Explanation:

Jill and Bonnie move in a circular path with the same angular speed of the merry-go-round.

The tangential velocity of the body is calculated as follows:

v = ω*R

where:

v is the tangential velocity or linear velocity  (m /s)

ω is the angular speed (rad/s)

R is radius where the body is located from the center of the circular path

Data

1 rev = 2π rad

ω = 1 rev/2s = 2π rad/2s = π rad/s

R : radio of the merry-go-round

Bonnie's linear velocity (vB)

vB = ω*R  = π*R (m/s)

Jill's linear velocity (vJ)

vJ = ω*(R /2) = (1/2 )(π*R) (m/s)