Answer:
DV/dt = 0,2355 m³/min
Step-by-step explanation:
Conical tank volume V = 1/3 *π*r²*h
r radius at the top 2 meters
when depth of water is 3 meters the radius of the level of water is:
let α angle of vertex of cone then
tan∠α = 2/8 tan∠α = 1/4 tan∠α = 0,25
At the same time when water is at 3 meters depth radius is
tan∠α = r/3 0,25*3= r r = 0,75 m
Now
DV/dt = (1/3)*π*r²*Dh/dt
Dh/dt = 0,4 meters/min
By substitution
DV/dt = 0,2355 m³/min