Respuesta :
Answer:
x≥[tex]\frac{7}{6}[/tex]
Step-by-step explanation:
given 1.5x+3.75≥5.5
→ 1.5x≥5.5-3.75
→ 1.5x≥1.75
→ x≥[tex]\frac{1.75}{1.5}[/tex]
→ x≥[tex]\frac{7}{6}[/tex]
Answer:
[tex]x[/tex] ≥ [tex]\frac{7}{6}[/tex]
Step-by-step explanation:
The expression we have is:
[tex]1.5x+3.75[/tex] ≥ [tex]5.5[/tex]
To find the solution of x, we need to clear the inequality until we leave the x on one side.
For this, the first step is to move 3.77 to the left with a minus sign:
[tex]1.5x[/tex] ≥ [tex]5.5-3.75[/tex]
solving the subtraction on the right side
[tex]1.5x[/tex] ≥ [tex]1.75[/tex]
and now we move the 1.5 that multiplies to the x, to the right dividing:
[tex]x[/tex] ≥ [tex]1.75/1.5[/tex]
solving the division:
[tex]x[/tex] ≥ [tex]1.666...[/tex]
since the value 1.666667
is not an exact number, is better to leave it as a fraction:
[tex]1.666...=\frac{7}{6}[/tex]
so the answer is:
[tex]x[/tex] ≥ [tex]\frac{7}{6}[/tex]
so any value equal or greater 7/6 is a solution of the inequality