Respuesta :

Answer:

x≥[tex]\frac{7}{6}[/tex]

Step-by-step explanation:

given 1.5x+3.75≥5.5

→  1.5x≥5.5-3.75

→  1.5x≥1.75

→  x≥[tex]\frac{1.75}{1.5}[/tex]

→  x≥[tex]\frac{7}{6}[/tex]

Answer:

[tex]x[/tex] ≥ [tex]\frac{7}{6}[/tex]

Step-by-step explanation:

The expression we have is:

[tex]1.5x+3.75[/tex] ≥ [tex]5.5[/tex]

To find the solution of x, we need to clear the inequality until we leave the x on one side.

For this, the first step is to move 3.77 to the left with a minus sign:

[tex]1.5x[/tex]  ≥ [tex]5.5-3.75[/tex]

solving the subtraction on the right side

[tex]1.5x[/tex]  ≥  [tex]1.75[/tex]

and now we move the 1.5 that multiplies to the x, to the right dividing:

[tex]x[/tex] ≥  [tex]1.75/1.5[/tex]

solving the division:  

[tex]x[/tex] ≥ [tex]1.666...[/tex]

since the value 1.666667

is not an exact number, is better to leave it as a fraction:

[tex]1.666...=\frac{7}{6}[/tex]

so the answer is:

[tex]x[/tex] ≥ [tex]\frac{7}{6}[/tex]

so any value equal or greater 7/6 is a solution of the inequality