Answer:
[tex]I_{edge} = 6.67 kg.m^2[/tex]
Explanation:
given,
mass of rod = 5 Kg
Length of rod = 2 m
R = 1 m
moment of inertial from one edge of the rod = ?
moment of inertia of rod through center of mass
[tex]I_{CM}= \dfrac{1}{12}M(L)^2[/tex]
using parallel axis theorem
[tex]I_{edge} = I_{CM} + MR^2[/tex]
[tex]I_{edge} =\dfrac{1}{12}ML^2+ M(\dfrac{L}{2})^2[/tex]
[tex]I_{edge} =\dfrac{1}{12}ML^2+ \dfrac{ML^2}{4}[/tex]
[tex]I_{edge} =\dfrac{1}{3}ML^2[/tex]
now, inserting all the given values
[tex]I_{edge} =\dfrac{1}{3}\times 5 \times 2^2[/tex]
[tex]I_{edge} = 6.67 kg.m^2[/tex]