Respuesta :

Answer:

g'(10) = [tex]\frac{-1}{16}[/tex]

Explanation:

Since g is the inverse of f ,

We can write

g(f(x)) = x     (Identity)

Differentiating both sides of the equation we get,

g'(f(x)).f'(x) = 1

g'(10) = [tex]\frac{1}{f'(x)}[/tex]    --equation[1]    Where f(x) = 10

Now, we have to find x when f(x) = 10

Thus 10 = [tex]\frac{4}{x}[/tex] + 2

[tex]\frac{4}{x}[/tex] = 8

x = [tex]\frac{1}{2}[/tex]

Since f(x) = [tex]\frac{4}{x}[/tex] + 2

f'(x) = -[tex]\frac{4}{x^{2} }[/tex]

f'([tex]\frac{1}{2}[/tex])  =  -4 × 4 = -16            

Putting it in equation 1, we get:

We get g'(10) = -[tex]\frac{1}{16}[/tex]