Answer:
[tex]y{x} = \sqrt{7+2Inx}[/tex]
Step-by-step explanation:
[tex]y(x)= 3 + \int\limits^x_e {dx}/ \, ty(t) , x>0}[/tex]
Let say; By y(x)= y(e)
we have;
[tex]y(e)= 3 + \int\limits^e_e {dt}/ \, ty= 3+0[/tex]
Using Fundamental Theorem of Calculus and differentiating by Lebiniz Rule:
[tex]y^{1} (x) = 0 + 1/ xy[/tex]
[tex]y^{1} = 1/xy[/tex]
dy/dx = 1/xy
[tex]\int\limits {y} \, dxy = \int\limits \, dx/x[/tex]
[tex]y^{2}/2 Inx + C[/tex]
RECALL: y(e) = 3
[tex](3)^{2} / 2 = In (e) + C[/tex]
[tex]\frac{9}{2} =In(e)+C[/tex]
[tex]\frac{9}{2} - 1 = C[/tex]
[tex]\frac{7}{2} = C[/tex]
[tex]y^{2} / 2 = In x +C[/tex]
[tex]y^{2} / 2 = In x +7/2[/tex]
MULTIPLYING BOTH SIDE BY 2 , TO ELIMINATE THE DENOMINATOR, WE HAVE;
[tex]y^{2} = {7+2Inx}[/tex]
[tex]y{x} = \sqrt{7+2Inx}[/tex]