Answer:
The mass of the box is 25.6 kg.
Explanation:
Given that,
Angle = 45°
Force = 180 N
Angle = 50°
We need to calculate the force of left side
Using balance equation
[tex]\sum F_{x}=0[/tex]
[tex]-F_{1}\cos45+180\cos50=0[/tex]
[tex]F_{1}=\dfrac{180\cos50}{\cos45}[/tex]
[tex]F_{1}=163.6\ N[/tex]
We need to calculate the mass of the box
Using balance equation
[tex]\sum F_{y}=0[/tex]
[tex]F_{1}\sin45+180\sin50-mg=0[/tex]
[tex]m=\dfrac{1}{g}(F_{1}\sin45+180\sin50)[/tex]
Put the value into the formula
[tex]m=\dfrac{1}{9.8}\times(163.6\sin45+180\sin50)[/tex]
[tex]m=25.8\ kg[/tex]
Hence, The mass of the box is 25.6 kg.