The cell potential of the following electrochemical cell depends on the gold concentration in the cathode half-cell:________
Pt(s)
|H2(g,1atm)
|H+(aq,1.0M)
|Au3+(aq,?M)
|Au(s).
What is the concentration of Au3+ in the solution if Ecell is 1.23 V ?

Respuesta :

Answer: The concentration of [tex]Au^{3+}[/tex] is [tex]1.096\times 10^{-6}[/tex]

Explanation:

The given chemical cell follows:

[tex]Pt(s)|H_2(g,1atm)|H^+(aq,1.0M)||Au^{3+}(aq,?M)|Au(s)[/tex]

Oxidation half reaction: [tex]H_2(g,1atm)\rightarrow 2H^{+}(aq,1.0M)+2e^-;E^o_{2H^{+}/H_2}=0.0V[/tex]       ( × 3)

Reduction half reaction: [tex]Au^{3+}(aq,?M)+3e^-\rightarrow Au(s);E^o_{Au^{3+}/Au}=1.50V[/tex]       ( × 2)

Net cell reaction: [tex]3H_2(g,1atm)+2Au^{3+}(aq,?M)\rightarrow 6H^{+}(aq,1.0M)+2Au(s)[/tex]

Oxidation reaction occurs at anode and reduction reaction occurs at cathode.

To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:

[tex]E^o_{cell}=E^o_{cathode}-E^o_{anode}[/tex]

Putting values in above equation, we get:

[tex]E^o_{cell}=1.50-(0.0)=1.50V[/tex]

To calculate the EMF of the cell, we use the Nernst equation, which is:

[tex]E_{cell}=E^o_{cell}-\frac{0.059}{n}\log \frac{[H^{+}]^6}{[Au^{3+}]^2}[/tex]

where,

[tex]E_{cell}[/tex] = electrode potential of the cell = 1.23 V

[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = +1.50 V

n = number of electrons exchanged = 6

[tex][H^{+}]=1.0M[/tex]

[tex][Au^{3+}]=?M[/tex]

Putting values in above equation, we get:

[tex]1.23=1.50-\frac{0.059}{6}\times \log(\frac{(1.0)^6}{[Au^{3+}]^2})[/tex]

[tex][Au^{3+}]=-1.0906\times 10^{-6},1.096\times 10^{-6}[/tex]

Neglecting the negative value because concentration cannot be negative.

Hence, the concentration of [tex]Au^{3+}[/tex] is [tex]1.096\times 10^{-6}[/tex]