An oscillating block-spring system has a mechanical energyof 1.00 J and amplitude of 10.0 cm and a maximum speed of 1.20m/s. Find (a) the spring constant and (b) the mass of theblock, and (c) the frequency of oscillation.

Respuesta :

Answer:

Explanation:

Given

Mechanical Energy of Spring-Block system is 1 J

Maximum Amplitude is [tex]A=10 cm[/tex]

maximum speed [tex]v_{max}=1.2 m/s[/tex]

Suppose [tex]x=A\sin \omega t [/tex]be general equation of motion of spring-mass system

where A=max amplitude

[tex]\omega [/tex]=Natural frequency of oscillation

t=time

[tex]v_{max}=A\omega =1.2[/tex]

[tex]0.1\cdot \omega =1.2[/tex]

[tex]\omega =12 rad/s[/tex]

maximum kinetic Energy must be equal to total Mechanical Energy when spring is un deformed i.e. at starting Position

[tex]\frac{1}{2}mv_{max}^2=1[/tex]

[tex]m=\frac{2}{1.2^2}=\frac{2}{1.44}=1.38 kg[/tex]

Also [tex]\omega [/tex]is also given by

[tex]\omega =\sqrt{\frac{k}{m}}[/tex]

[tex]k=\omega ^2\cdot m[/tex]

where k= spring constant

[tex]k=12^2\cdot 1.38 [/tex]

[tex]k=200 N/m[/tex]