Respuesta :

Answer:

The solution for the given expression is [tex]x^{38}[/tex] , i.e option C

Step-by-step explanation:

Given expression as :

[tex](\dfrac{x^{6}\times x^{10}}{x^{-3}})^{2}[/tex]

Now, From the common radix method

∵ In multiplication of radix , if the radix is same , then power is added

I.e [tex]x^{6}\times x^{10[/tex] = [tex]x^{6+10}[/tex]

Or , [tex]x^{6}\times x^{10[/tex] = [tex]x^{16}[/tex]

Now, The expression can be written as

[tex](\frac{x^{16}}{x^{-3}})^{2}[/tex]

And In Division of radix , if the radix is same , then power is subtracted

So, [tex]\frac{x^{16}}{x^{-3}}[/tex]

Or, [tex]x^{16 - (-)3}[/tex]

Or,  [tex]x^{16 + 3}[/tex]

or, [tex]x^{19}[/tex]

∴ The expression is now

[tex](x^{19})[/tex]²

Now, again this is written as

[tex]x^{19}[/tex] × [tex]x^{19}[/tex]

I.e here again the radix is same and in multiple for, so, power is added

∴ [tex]x^{19}[/tex] × [tex]x^{19}[/tex]  = [tex]x^{19+19}[/tex]

I.e [tex]x^{19}[/tex] × [tex]x^{19}[/tex] =  [tex]x^{38}[/tex]

Hence The solution for the given expression is [tex]x^{38}[/tex] , i.e option C  . Answer