Answer:
[tex]3y^2[/tex]
Step-by-step explanation:
Given:
To find the GCF of [tex]3y^2\ and\ 24y^3[/tex] using prime factorization.
Writing each in prime factors:
3 = 1 [tex]\times[/tex] 3
24 = 1 [tex]\times[/tex] 2 [tex]\times[/tex] 2 [tex]\times[/tex]2 [tex]\times[/tex] 3
Now, GCF of 3 and 24 is 3
[tex]y^2=1\times y\times y[/tex]
[tex]y^3=1\times y\times y\times y[/tex]
GCF of [tex]y^2[/tex] and [tex]y^3[/tex] is [tex]y\times y=y^2[/tex].
Therefore, the overall GCF of the two terms is [tex]3y^2[/tex]