Respuesta :

Answer:

[tex]3y^2[/tex]

Step-by-step explanation:

Given:

To find the GCF of [tex]3y^2\ and\ 24y^3[/tex] using prime factorization.

Writing each in prime factors:

3 = 1 [tex]\times[/tex] 3

24 = 1 [tex]\times[/tex] 2 [tex]\times[/tex] 2 [tex]\times[/tex]2 [tex]\times[/tex] 3

Now, GCF of 3 and 24 is 3

[tex]y^2=1\times y\times y[/tex]

[tex]y^3=1\times y\times y\times y[/tex]

GCF of [tex]y^2[/tex] and [tex]y^3[/tex] is [tex]y\times y=y^2[/tex].

Therefore, the overall GCF of the two terms is [tex]3y^2[/tex]