A hot air balloon is tethered to a 100-meter rope with no slack. The balloon is 70 meters above the ground. What is the angle of elevation? (to the nearest tenth) A) 34.9° B) 43.5° C) 44.4° D) 45.6°

Respuesta :

Answer:

The value of angle of elevation is 44.4°  .

Step-by-step explanation:

Given as :

The measure of the rope of hot air balloon = 100 m

The height of balloon above the ground = 70 m

Let The angle of elevation = Ф

Now, According to question

Sin angle = [tex]\dfrac{\textrm Perpendicular}{\textrm Hypotenuse}[/tex]

Or, SinФ =  [tex]\dfrac{\textrm Height of baoolon above ground}{\textrm measure of rope}[/tex]

Or, SinФ = [tex]\frac{70}{100}[/tex]

Or, SinФ = [tex]\frac{7}{10}[/tex]

∴ Ф = [tex]Sin^{-1}[/tex]([tex]\frac{7}{10}[/tex])

I.e Ф = 44.4°

Hence The value of angle of elevation is 44.4°  . Answer

Draw the situation.

Apply sinθ  [tex]= \frac{opposite}{hypotenuse}[/tex]

sinθ [tex]=\frac{70}{100}[/tex]

θ = [tex]sin^{-1}[/tex][tex](\frac{70}{100} )[/tex]

θ = 44.4°