Answer:
[tex]\large\boxed{y=\dfrac{1}{2}x-3}[/tex]
Step-by-step explanation:
The slope-intercept form of an equation of a line:
[tex]y=mx+b[/tex]
m - slope
b - y-intercept
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have two points (2, -2) and (4, -1).
Substitute:
[tex]m=\dfrac{-1-(-2)}{4-2}=\dfrac{-1+2}{2}=\dfrac{1}{2}[/tex]
Put the value of a slope and the coordinates of the point (2, -2) to the equation of a line:
[tex]-2=\dfrac{1}{2}(2)+b[/tex]
[tex]-2=1+b[/tex] subtract 1 from both sides
[tex]-3=b\to b=-3[/tex]
Finally:
[tex]y=\dfrac{1}{2}x-3[/tex]