Respuesta :

gmany

Answer:

[tex]\large\boxed{y=\dfrac{1}{2}x-3}[/tex]

Step-by-step explanation:

The slope-intercept form of an equation of a line:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have two points (2, -2) and (4, -1).

Substitute:

[tex]m=\dfrac{-1-(-2)}{4-2}=\dfrac{-1+2}{2}=\dfrac{1}{2}[/tex]

Put the value of a slope and the coordinates of the point (2, -2) to the equation of a line:

[tex]-2=\dfrac{1}{2}(2)+b[/tex]

[tex]-2=1+b[/tex]              subtract 1 from both sides

[tex]-3=b\to b=-3[/tex]

Finally:

[tex]y=\dfrac{1}{2}x-3[/tex]