Respuesta :
Answer: The standard enthalpy change for the given reaction is 868.05 kJ
Explanation:
- Calculating the enthalpy of propane:
The chemical equation for the combustion of propane follows:
[tex]C_3H_8(g)+5O_2(g)\rightarrow 3CO_2(g)+4H_2O(l)[/tex]
The equation for the enthalpy change of the above reaction is:
[tex]\Delta H^o_{rxn}=[(3\times \Delta H^o_f_{(CO_2(g))})+(4\times \Delta H^o_f_{(H_2O(g))})]-[(1\times \Delta H^o_f_{(C_3H_8(g))})+(5\times \Delta H^o_f_{(O_2(g))})][/tex]
We are given:
[tex]\Delta H^o_f_{(H_2O(l))}=-285.8kJ/mol\\\Delta H^o_f_{(O_2(g))}=0kJ/mol\\\Delta H^o_f_{(CO_2(g))}=-393.5kJ/mol\\\Delta H^o_{rxn}=-2219.0kJ[/tex]
Putting values in above equation, we get:
[tex]-2219.0=[(3\times (-393.5))+(4\times (-285.8))]-[(1\times \Delta H^o_f_{(C_3H_8(g))})+(5\times (0))]\\\\\Delta H^o_f_{(C_3H_8(g))}=-140.7kJ/mol[/tex]
The enthalpy of formation of [tex]C_3H_8[/tex] is -140.7 kJ/mol
- Calculating the enthalpy of propylene:
The chemical equation for the combustion of propane follows:
[tex]2C_3H_6(g)+9O_2(g)\rightarrow 6CO_2(g)+6H_2O(l)[/tex]
The equation for the enthalpy change of the above reaction is:
[tex]\Delta H^o_{rxn}=[(6\times \Delta H^o_f_{(CO_2(g))})+(6\times \Delta H^o_f_{(H_2O(g))})]-[(2\times \Delta H^o_f_{(C_3H_6(g))})+(9\times \Delta H^o_f_{(O_2(g))})][/tex]
We are given:
[tex]\Delta H^o_f_{(H_2O(l))}=-285.8kJ/mol\\\Delta H^o_f_{(O_2(g))}=0kJ/mol\\\Delta H^o_f_{(CO_2(g))}=-393.5kJ/mol\\\Delta H^o_{rxn}=-2058.3kJ[/tex]
Putting values in above equation, we get:
[tex]-2058.3=[(6\times (-393.5))+(6\times (-285.8))]-[(2\times \Delta H^o_f_{(C_3H_6(g))})+(9\times (0))]\\\\\Delta H^o_f_{(C_3H_6(g))}=-1008.75kJ/mol[/tex]
The enthalpy of formation of [tex]C_3H_6[/tex] is -1008.75 kJ/mol
- Calculating the enthalpy change of the reaction:
The given chemical equation follows:
[tex]C_3H_6(g)+H_2(g)\rightarrow C_3H_8(g)[/tex]
The equation for the enthalpy change of the above reaction is:
[tex]\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(C_3H_8(g))})]-[(1\times \Delta H^o_f_{(C_3H_6(g))})+(1\times \Delta H^o_f_{(H_2(g))})][/tex]
We are given:
[tex]\Delta H^o_f_{(C_3H_8(g))}=-140.7kJ/mol\\\Delta H^o_f_{(H_2(g))}=0kJ/mol\\\Delta H^o_f_{(C_3H_6(g))}=-1008.75kJ/mol[/tex]
Putting values in above equation, we get:
[tex]\Delta H^o_{rxn}=[(1\times (-140.7))]-[(1\times (-1008.75))+(1\times (0))]\\\\\Delta H^o_{rxn}=868.05kJ[/tex]
Hence, the standard enthalpy change for the given reaction is 868.05 kJ