Answer:
[tex]\large\boxed{\dfrac{3x+6}{x-4}\div\dfrac{2x^2+9x+10}{x^2+4x}=\dfrac{3x(x+4)}{(x-4)(2x+5)}}[/tex]
Step-by-step explanation:
Just like that
[tex]\dfrac{3x+6}{x-4}\div\dfrac{2x^2+9x+10}{x^2+4x}=\dfrac{3x+6}{x-4}\cdot\dfrac{x^2+4x}{2x^2+9x+10}\\\\=\dfrac{3(x+2)}{(x-4)}\cdot\dfrac{x(x+4)}{2x^2+4x+5x+10}=\dfrac{3(x+2)}{(x-4)}\cdot\dfrac{x(x+4)}{2x(x+2)+5(x+2)}\\\\=\dfrac{3(x+2)}{(x-4)}\cdot\dfrac{x(x+4)}{(x+2)(2x+5)}\qquad\text{cancel}\ (x+2)\\\\=\dfrac{3x(x+4)}{(x-4)(2x+5)}[/tex]