Answer:
B. -x + 8
Step-by-step explanation:
Given expression
[tex]\dfrac{8-4(x-6)}{4}[/tex]
Consider the numerator [tex]8-4(x-6).[/tex]
First, use distributive property:
[tex]8-4(x-6)=8-(4x-24)[/tex]
Open the brackets:
[tex]8-(4x-24)=8-4x+24[/tex]
Combine the like terms:
[tex]8-4x+24=(8+24)-4x=32-4x[/tex]
Again use distributive property:
[tex]32-4x=4\cdot 8-4x=4(8-x)[/tex]
Now, the expression is
[tex]\dfrac{4(8-x)}{4}=8-x\ \text{or}\ -x+8[/tex]