An ideal diatomic gas starting at room temperature T1 = 300 K and atmospheric pressure p1 = 1.0 atm is compressed adiabatically to 1/10 of its original volume. What is the final temperature of the gas?

Respuesta :

Answer:

The final temperature of the given ideal diatomic gas: T₂ = 753.6 K

Explanation:

Given: Atmospheric pressure: P = 1.0 atm

Initial Volume: V₁ , Final Volume: V₂ = V₁ (1/10)

⇒ V₁ / V₂ = 10

Initial Temperature: T₁ = 300 K, Final temperature: T₂ = ? K

 

For a diatomic ideal gas: γ =  7/5

For an adiabatic process:

[tex]V^{\gamma-1 }T = constant[/tex]

[tex]V_{1}^{\gamma-1 }T_{1} = V_{2}^{\gamma-1 }T_{2}[/tex]

[tex]\left [\frac{V_{1}}{V_{2}} \right ]^{\gamma-1 } = \frac{T_{2}}{T_{1}}[/tex]

[tex]\left [10 \right ]^{\frac{7}{5}-1 } = \frac{T_{2}}{300 K}[/tex]

[tex]\left [10 \right ]^{\frac{2}{5} } = \frac{T_{2}}{300 K}[/tex]

[tex]2.512 = \frac{T_{2}}{300 K}[/tex]

[tex]T_{2} = 753.6 K[/tex]

Therefore, the final temperature of the given ideal diatomic gas: T₂ = 753.6 K