Answer:
Option C.
Step-by-step explanation:
Given information
[tex]n_1=1563[/tex] and [tex]n_2=579[/tex]
[tex]x_1=61[/tex] and [tex]x_2=15[/tex]
Using the given information we get
[tex]p_1=\dfrac{x_1}{n_1}=\dfrac{61}{1563}\approx 0.039[/tex]
[tex]p_2=\dfrac{x_2}{n_2}=\dfrac{15}{579}\approx 0.026[/tex]
The formula for confidence interval for p_1 - p_2 is
[tex]C.I.=(p_1-p_2)\pm z*\sqrt{\dfrac{p_1(1-p_1)}{n_1}+\dfrac{p_2(1-p_2)}{n_2}}[/tex]
From the standard normal table the value of z* at 95% confidence interval = 1.96.
[tex]C.I.=(0.039-0.026)\pm (1.96)\sqrt{\dfrac{0.039(1-0.039)}{1563}+\dfrac{0.026(1-0.026)}{579}}[/tex]
[tex]C.I.=0.013\pm (1.96)(0.008)[/tex]
[tex]C.I.=0.013\pm 0.016[/tex]
[tex]C.I.=(0.013-0.016,0.013+0.016)[/tex]
[tex]C.I.=(-0.003,0.029)[/tex]
The 95% confidence interval for p_1 - p_2. is (-0.003,0.029).
Therefore, the correct option is C.