A particle moving along a straight line is subjected to a deceleration ???? = (−2???? 3 ) m/???? 2 , where v is in m/s. If it has a velocity v = 10 m/s and a position s = 15 m when t = 0, determine its velocity and position when t = 25 s.

Respuesta :

Answer:

(a). The velocity is 0.099 m/s.

(b). The position is 19.75 m.

Explanation:

Given that,

The deceleration is

[tex]a=(-2v^3)\ m/s^2[/tex]

We need to calculate the velocity at t = 25 s

The acceleration is the first derivative of velocity of the particle.

[tex]a=\dfrac{dv}{dt}[/tex]

[tex]\dfrac{dv}{dt}=-2v^3[/tex]

[tex]\dfrac{dv}{-v^3}=2dt[/tex]

On integrating

[tex]int{\dfrac{dv}{-v^3}}=\int{2dt}[/tex]

[tex]\dfrac{1}{2v^2}=2t+C[/tex]

[tex]v^2=\dfrac{1}{4t+2C}[/tex]....(I)

At t = 0, v = 10 m/s

[tex]10^2=\dfrac{1}{4\times0+2C}[/tex]

[tex]C=\dfrac{1}{200}[/tex]

Put the value of C in equation (I)

[tex]v^2=\dfrac{1}{4\times25+2\times\dfrac{1}{200}}[/tex]

[tex]v=\sqrt{\dfrac{1}{4\times25+2\times\dfrac{1}{200}}}[/tex]

[tex]v=0.099\ m/s[/tex]

The velocity is 0.099 m/s.

(b). We need to calculate the position at t = 25 sec

The velocity is the first derivative of position of the particle.

[tex]\dfrac{ds}{dt}=v[/tex]

On integrating

[tex]\int{ds}=\int(\sqrt{\dfrac{200}{800t+1}})dt[/tex]

[tex]s=\dfrac{\sqrt{200}\times2\sqrt{800t+1}}{800}+C'[/tex]

At t = 0, s = 15 m

[tex]15=\dfrac{200}{800}+C'[/tex]

[tex]C'=15-\dfrac{200}{800}[/tex]

[tex]C'=14.75[/tex]

Put the value in the equation

[tex]s=\dfrac{\sqrt{200}\times2\sqrt{800\times25+1}}{800}+14.75[/tex]

[tex]s=19.75\ m[/tex]

The position is 19.75 m.

Hence, (a). The velocity is 0.099 m/s.

(b). The position is 19.75 m.

The velocity of an object depends on its position.

Part A: The velocity of the moving particle at t = 25 s is 0.099 m/s.

Part B: The position of the particle at t = 25 s is 15.475 m.

What is velocity?

Velocity is defined as the rate at which the position of an object changes.

Given that the deacceleration of the particle is [tex]a = (-2v^3)[/tex]. The velocity of the particle v = 10 m/s and a position s = 15 m when t = 0.

The acceleration of the particle is given below.

[tex]a = \dfrac {dv}{dt}[/tex]

[tex]-2v^3 = \dfrac {dv}{dt}[/tex]

[tex]- 2 dt = \dfrac {1}{v^3}dv[/tex]

Integrating the above equation, we get,

[tex]\int (-2 dt) = \int \dfrac {1}{v^3} dv[/tex]

[tex]2t + C = \dfrac {1}{2v^2}[/tex]

[tex]v^2 = \dfrac {1}{4t + 2C}[/tex]

Putting t=0 s, v = 10 m/s

[tex]100 = \dfrac {1}{4\times 0 + 2C}[/tex]

[tex]100 = \dfrac {1}{2C}[/tex]

[tex]C = 5 \times 10^{-3}[/tex]

Part A: Velocity

The velocity of the particle at t = 25 s is given as below.

[tex]v^2 = \dfrac { 1}{(4\times 25) + (2\times 5\times 10^{-3})}[/tex]

[tex]v^2 = \dfrac{1}{100.01}[/tex]

[tex]v = 0.099 \;\rm m/s[/tex]

Hence the velocity of the moving particle at t = 25 s is 0.099 m/s.

Part B:  Position

The velocity of the particle is given as,

[tex]v = \dfrac {ds}{dt}[/tex]

[tex]v dt = ds[/tex]

Integrating the above equation, we get,

[tex]\int vdt = \int ds[/tex]

[tex]\int \sqrt{\dfrac {1}{4t + (\dfrac {1}{100})}} dt = s[/tex]

[tex]\int\sqrt{ {\dfrac {100}{400 t + 1}}}dt = s[/tex]

[tex]s =\dfrac {\sqrt{100} \times 2 \sqrt{400 t + 1}}{400} + C'[/tex]

Put t = 0 s, and s = 10 m,

[tex]15=\dfrac {\sqrt{100} \times 2 \sqrt{400 \times 0 + 1}}{400} + C'[/tex]

[tex]15 = \dfrac {\sqrt{100}\times 2}{400} + C'[/tex]

[tex]C' = 14.95[/tex]

Now the position at t = 25 s is,

[tex]s =\dfrac {\sqrt{100} \times 2 \sqrt{400 \times 25 + 1}}{400} + 14.95[/tex]

[tex]s =15.475 \;\rm m[/tex]

Hence the position of the particle at t = 25 s is 15.475 m.

To know more about the velocity and position, follow the link given below.

https://brainly.com/question/1439172.