If you have 100 g of radio isotope with a half-life of 10 years: How much of the isotope will you have left after 10 years? How much of the isotope will you have left after 20 years? How much of half-lives will occur in 40 years?

Respuesta :

Answer:

1)50.007 grams of an isotope will left after 10 years.

1)25.007 grams of an isotope will left after 20 years.

3) 23 half-lives will occur in 40 years.

Explanation:

Formula used :

[tex]N=N_o\times e^{-\lambda t}\\\\\lambda =\frac{0.693}{t_{\frac{1}{2}}}[/tex]

where,

[tex]N_o[/tex] = initial mass of isotope

N = mass of the parent isotope left after the time, (t)

[tex]t_{\frac{1}{2}}[/tex] = half life of the isotope

[tex]\lambda[/tex] = rate constant

We have:

[tex][N_o]=100 g[/tex]

[tex]t_{1/2}=10 years[/tex]

[tex]\lambda =\frac{0.693}{t_{1/2}}=\frac{0.693}{10 year}=0.0693 year^{-1}[/tex]

1) mass of isotope left after 10 years:

t = 10 years

[tex]N=N_o\times e^{-\lambda t}[/tex]

[tex]N=100g\times e^{-0.0693 year^{-1}\times 10}=50.007 g[/tex]

2) mass of isotope left after 20 years:

t = 20 years

[tex]N=N_o\times e^{-\lambda t}[/tex]

[tex]N=100g\times e^{-0.0693 year^{-1}\times 20}=25.007 g[/tex]

3) Half-lives will occur in 40 years

Mass of isotope left after 40 years:

t = 40 years

[tex]N=N_o\times e^{-\lambda t}[/tex]

[tex]N=100g\times e^{-0.0693 year^{-1}\times 40}=6.2537 g[/tex]

number of half lives = n

[tex]N=\frac{N_o}{2^n}[/tex]

[tex]6.2537 g=\frac{100 g}{2^n}[/tex]

[tex]n\ln 2=\frac{100 g}{6.2537 g}[/tex]

n = 23

23 half-lives will occur in 40 years.