Answer:
Final angular velocity, [tex]\omega_f=0.61\ rad/s[/tex]
Explanation:
Given that,
Radius of merry- go- round, r = 3 m
Inertia of the merry- go- round, [tex]I=600\ kg-m^2[/tex]
Angular speed, [tex]\omega=0.8\ rad/s[/tex]
Mass, m = 20 kg
Let I' is the new rotational inertia of the merry- go- round. Here, the angular momentum of the system remains conserved. So,
[tex]L_f=L_o[/tex]
[tex]I_f\omega_f=I_o\omega_o[/tex]
[tex]\omega_f=(\dfrac{I}{I+mr^2})\omega_o[/tex]
[tex]\omega_f=(\dfrac{600}{600+20\times 3^2})\times 0.8[/tex]
[tex]\omega_f=0.61\ rad/s[/tex]
So, the angular velocity of the merry-go-round is 0.61 rad/s. So, the correct option is (A). Hence, this is the required solution.