Respuesta :

Answer:

[tex]\frac{2\pi}{15},\frac{4\pi}{15},\frac{8\pi}{15},\frac{2\pi}{3},\frac{14\pi}{15}, \frac{16\pi}{15}, \frac{4\pi}{3},\frac{22\pi}{15}, \frac{26\pi}{15}, \frac{28\pi}{15}[/tex]

Step-by-step explanation:

Solving trigonometric equations.

We are given a condition and we must find all angles who meet it in the provided interval. Our equation is

[tex]cos5x=-\frac{1}{2}[/tex]

Solving for 5x:

[tex]5x=\frac{2\pi}{3}+2n\pi[/tex]

[tex]5x=\frac{4\pi}{3}+2n\pi[/tex]

The values for x will be

[tex]x=\frac{\frac{2\pi}{3}+2n\pi}{5}[/tex]

[tex]x=\frac{\frac{4\pi}{3}+2n\pi}{5}[/tex]

To find all the solutions, we'll give n values of 0, 1, 2,... until x stops belonging to the interval [tex](0,2\pi)[/tex]

For n=0

[tex]x=\frac{\frac{2\pi}{3}}{5}=\frac{2\pi}{15}[/tex]

[tex]x=\frac{\frac{4\pi}{3}}{5}=\frac{4\pi}{15}[/tex]

For n=1

[tex]x=\frac{\frac{2\pi}{3}+2\pi}{5}=\frac{8\pi}{15}[/tex]

[tex]x=\frac{\frac{4\pi}{3}+2\pi}{5}=\frac{2\pi}{3}[/tex]

For n=2

[tex]x=\frac{\frac{2\pi}{3}+4\pi}{5}=\frac{14\pi}{15}[/tex]

[tex]x=\frac{\frac{4\pi}{3}+4\pi}{5}=\frac{16\pi}{15}[/tex]

For n=3

[tex]x=\frac{\frac{2\pi}{3}+6\pi}{5}=\frac{4\pi}{3}[/tex]

[tex]x=\frac{\frac{4\pi}{3}+6\pi}{5}=\frac{22\pi}{15}[/tex]

For n=4

[tex]x=\frac{\frac{2\pi}{3}+8\pi}{5}=\frac{26\pi}{15}[/tex]

[tex]x=\frac{\frac{4\pi}{3}+8\pi}{5}=\frac{28\pi}{15}[/tex]

For n=5 we would find values such as  

[tex]x=\frac{\frac{2\pi}{3}+10\pi}{5}=\frac{32\pi}{15}[/tex]

[tex]x=\frac{\frac{4\pi}{3}+10\pi}{5}=\frac{34\pi}{15}[/tex]

which don't lie in the interval [tex](0,2\pi)[/tex]

The whole set of results is

[tex]\frac{2\pi}{15},\frac{4\pi}{15},\frac{8\pi}{15},\frac{2\pi}{3},\frac{14\pi}{15}, \frac{16\pi}{15}, \frac{4\pi}{3},\frac{22\pi}{15}, \frac{26\pi}{15}, \frac{28\pi}{15}[/tex]