Answer:
The molal boiling point elevation constant is 1.59 ≈ 1.6 [tex]Kkgmol^{-1}[/tex]
Explanation:
To solve this question , we will make use of the equation ,
Δ[tex]T_{b} = i*K_{b} *m[/tex]
where ,
- Δ[tex]T_{b}[/tex] is the change in boiling point of the substance [tex]X[/tex] ( °[tex]C[/tex] or [tex]K[/tex])
- [tex]i[/tex] is the Vant Hoff Factor which = 1 in this case ( no unit )
- [tex]K_{b}[/tex] is the mola boiling point elevation constant of X ( [tex]Kkgmol^{-1}[/tex])
- [tex]m[/tex] is the molality of the solution which has [tex](NH_{2})_{2} CO[/tex] as the solute and [tex]X[/tex] as the solution ([tex]molkg^{-1}[/tex])
- Δ[tex]T_{b}[/tex] = [tex]124.3 -123.3 = 1[/tex] °[tex]C[/tex] or [tex]K[/tex];
- [tex]i[/tex]=1;
- [tex]m[/tex]= [tex]\frac{moles of solute}{weight of solvent(kg)}[/tex][tex]molkg^{-1}[/tex]
∴ [tex]m = \frac{\frac{24.6}{60} }{\frac{650}{1000} }[/tex]
- as the weight of [tex](NH_{2})_{2} CO[/tex] is [tex]60g[/tex] and thus number of moles = [tex]\frac{24.6}{60}[/tex]
- and the weight of solvent in [tex]kg[/tex] is [tex]\frac{650}{1000}[/tex]
4. [tex]K_{b}[/tex] ⇒ ?
∴
[tex]1=1*K_{b} *\frac{\frac{24.6}{60} }{\frac{650}{1000} }[/tex]
⇒ [tex]K_{b}[/tex] = [tex]1.59[/tex] ≈ 1.6 [tex]Kkgmol^{-1}[/tex]