What is the wavelength (in nm) of the photon absorbed for a transition of an electron from ninitial = 2 that results in the least energetic spectral line in the visible series of the H atom?

Respuesta :

Answer: 656.6 nm.

Explanation:

Using Rydberg's Equation for hydrogen atom:

[tex]\frac{1}{\lambda}=R_H\left(\frac{1}{n_i^2}-\frac{1}{n_f^2} \right )[/tex]

Where,

[tex]\lambda[/tex] = Wavelength of radiation

[tex]R_H[/tex] = Rydberg's Constant

[tex]n_f[/tex] = Higher energy level  = 3  (least energetic for visible series)

[tex]n_i[/tex]= Lower energy level  = 2

We have:

[tex]n_f=3, n_i=2[/tex]

[tex]R_H=1.097\times 10^7 m^{-1}[/tex]

[tex]\frac{1}{\lambda}=1.097\times 10^7 m^{-1}\times \left(\frac{1}{2^2}-\frac{1}{3^2} \right )[/tex]

[tex]\frac{1}{\lambda}=1.097\times 10^7 m^{-1}\times \frac{5}{36}[/tex]

[tex]\frac{1}{\lambda}=0.1523\times 10^{7} m[/tex]

[tex]\lambda=6.566\times 10^{-7}m=656.6nm[/tex]

([tex]1 m= 10^9nm[/tex])

The wavelength of the photon emitted when the hydrogen atom undergoes a transition from n = 2 to n = 3 is 656.6 nm.