Answer:
The coordinate of point P along the directed line segment AB is ( - 1 , - 2 )
Step-by-step explanation:
Given as :
The coordinate of the points A = ( - 4 , - 8 )
The coordinate of the points B = ( 0 , 0 )
The Point P divide the line joining points A and B in the ratio m : n = 3 : 1
Let The coordinates of the points P = ( x , y )
So, x = [tex]\dfrac{mx_2 + nx_1}{m + n}[/tex]
And y = [tex]\dfrac{my_2 + ny_1}{m + n}[/tex]
∴ x = [tex]\dfrac{mx_2 + nx_1}{m + n}[/tex]
Or, x = [tex]\frac{3\times 0+1\times (-4)}{3 + 1}[/tex]
Or, x = [tex]\frac{0-4}{4}[/tex]
∴ x = - 1
Similarly
y = [tex]\dfrac{my_2 + ny_1}{m + n}[/tex]
Or, y = [tex]\frac{3\times 0+1\times (-8)}{3 + 1}[/tex]
Or, y = [tex]\frac{0-8}{4}[/tex]
∴ y = - 2
so, coordinate of P ( x , y ) = ( - 1 , - 2 )
Hence The coordinate of point P along the directed line segment AB is ( - 1 , - 2 ) Answer