Respuesta :

Answer:

Co-ordinates of point R is (26,2)

Step-by-step explanation:

Given point:

Endpoint S(8,4)

Mid-point M of segment RS (17,3)

Let endpoint [tex]R[/tex] have co-ordinates [tex](x_2,y_2)[/tex]

Using midpoint formula:

[tex]M=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Where [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are co-ordinates of the endpoint of the segment.

Plugging in values to find the midpoint of segment KN.

[tex]M=(\frac{8+x_2}{2},\frac{4+y_2}{2})[/tex]

We know [tex]M(17,3)[/tex]

So, we have

[tex](17,3)=(\frac{8+x_2}{2},\frac{4+y_2}{2})[/tex]

Solving for [tex]x_2[/tex]  

[tex]\frac{8+x_2}{2}=17[/tex]

Multiplying both sides by 2.

[tex]\frac{8+x_2}{2}\times 2=17\times 2[/tex]

[tex]8+x_2=34[/tex]

Subtracting both sides by 8.

[tex]8+x_2-8=34-8[/tex]

∴ [tex]x_2=26[/tex]

Solving for [tex]y_2[/tex]  

[tex]\frac{4+y_2}{2}=3[/tex]

Multiplying both sides by 2.

[tex]\frac{4+y_2}{2}\times 2=3\times 2[/tex]

[tex]4+y_2=6[/tex]

Subtracting both sides by 4.

[tex]4+y_2-4=6-4[/tex]

∴ [tex]y_2=2[/tex]

Thus co-ordinates of point R is (26,2)  (Answer)