Answer:
Sum of the solutions of [tex]x^2+9x+20=0[/tex] is -9.
Product of the solutions of [tex]6x^2+7x=3[/tex] is [tex]-0.50[/tex]
Step-by-step explanation:
1. [tex]x^2+9x+20=0[/tex]
Given:
The expression whose sum of the solution is required is given as:
[tex]x^{2} +9x+20=0[/tex]
For a quadratic equation of the form [tex]ax^2+bx+c=0[/tex] the sum of the solutions is given as:
Sum = [tex]\frac{-b}{a}[/tex]
Here, [tex]a=1,b=9,c=20[/tex]
Therefore, the sum of the solutions = [tex]-\frac{9}{1}=-9[/tex]
2. [tex]6x^2+7x=3[/tex]
Rewriting the above equation in a standard quadratic equation, we get:
[tex]6x^2+7x-3=0[/tex]
For a quadratic equation of the form [tex]ax^2+bx+c=0[/tex] the product of the solutions is given as:
Product = [tex]\frac{c}{a}[/tex]
Here, [tex]a=6,b=7,c=-3[/tex]
Therefore, the product of the solutions = [tex]\frac{-3}{6}=-0.50[/tex]