Respuesta :

Answer:

Sum of the solutions of [tex]x^2+9x+20=0[/tex] is -9.

Product of the solutions of [tex]6x^2+7x=3[/tex] is [tex]-0.50[/tex]

Step-by-step explanation:

1. [tex]x^2+9x+20=0[/tex]

Given:

The expression whose sum of the solution is required is given as:

[tex]x^{2} +9x+20=0[/tex]

For a quadratic equation of the form [tex]ax^2+bx+c=0[/tex] the sum of the solutions is given as:

Sum = [tex]\frac{-b}{a}[/tex]

Here, [tex]a=1,b=9,c=20[/tex]

Therefore, the sum of the solutions = [tex]-\frac{9}{1}=-9[/tex]

2. [tex]6x^2+7x=3[/tex]

Rewriting the above equation in a standard quadratic equation, we get:

[tex]6x^2+7x-3=0[/tex]

For a quadratic equation of the form [tex]ax^2+bx+c=0[/tex] the product of the solutions is given as:

Product = [tex]\frac{c}{a}[/tex]

Here, [tex]a=6,b=7,c=-3[/tex]

Therefore, the product of the solutions = [tex]\frac{-3}{6}=-0.50[/tex]