Starting from Newton’s law of universal gravitation, show how to find the speed of the moon in its orbit from the earth-moon distance of 3.9 × 108 m and the earth’s mass. Assume the orbit is a circle.

Respuesta :

Answer: 1010.92 m/s

Explanation:

According to Newton's law of universal gravitation:

[tex]F=G\frac{Mm}{r^{2}}[/tex] (1)

Where:

[tex]F[/tex] is the gravitational force between Earth and Moon

[tex]G=6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}[/tex] is the Gravitational Constant

[tex]M=5.972(10)^{24} kg[/tex] is the mass of the Earth

[tex]m=7.349(10)^{22} kg[/tex] is the mass of the Moon

[tex]r=3.9(10)^{8} m[/tex] is the distance between the Earth and Moon

Asuming the orbit of the Moon around the Earth a circular orbit, the Earth exercts a centripetal force on the moon, which is equal to [tex]F[/tex]:

[tex]F=m.a_{C}[/tex] (2)

Where [tex]a_{C}[/tex] is the centripetal acceleration given by:

[tex]a_{C}=\frac{V^{2}}{r}[/tex] (3)

Being [tex]V[/tex] the orbital velocity of the moon

Making (1)=(2):

[tex]m.a_{C}=G\frac{Mm}{r^{2}}[/tex] (4)

Simplifying:

[tex]a_{C}=G\frac{M}{r^{2}}[/tex] (5)

Making (5)=(3):

[tex]\frac{V^{2}}{r}=G\frac{M}{r^{2}}[/tex] (6)

Finding [tex]V[/tex]:

[tex]V=\sqrt{\frac{GM}{r}}[/tex] (7)

[tex]V=\sqrt{\frac{(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(5.972(10)^{24} kg)}{3.9(10)^{8} m}}[/tex] (8)

Finally:

[tex]V=1010.92 m/s[/tex]