Respuesta :

Answer:

[tex]m\angle A=\tan^{-1}(\frac{m}{n})[/tex]

[tex]AB=\sqrt{m^2+n^2}[/tex]

Step-by-step explanation:

Given:

In Δ ABC

m∠C= 90°

[tex]BC=m[/tex]

[tex]AC=n[/tex]

For the triangle ABC we can apply trigonometric ratio to find m∠A.

We have:

[tex]\tan\angle A=\frac{BC}{AC}[/tex]

Substituting values of side BC and AC

[tex]\tan \angle A=\frac{m}{n}[/tex]

Taking inverse tan to get m∠A.

∴ [tex]m\angle A=\tan^{-1}(\frac{m}{n})[/tex]

AB can be found out using Pythagorean theorem:

AB being the hypotenuse can be written as

[tex]AB^2=BC^2+AC^2[/tex]

Substituting values of side BC and AC

[tex]AB^2=m^2+n^2[/tex]

Taking square roots both sides:

[tex]\sqrt{AB^2}=\sqrt{m^2+n^2}[/tex]

∴ [tex]AB=\sqrt{m^2+n^2}[/tex]

Ver imagen jitumahi456