Respuesta :

Roots of the polynomial [tex]x^3-5x+5=2x^2-5[/tex] are [tex]x=\sqrt{5},x=-\sqrt{5}\,\,and\,\,x=2[/tex]

Step-by-step explanation:

We need to find roots of the polynomial equation: [tex]x^3-5x+5=2x^2-5[/tex]

Solving the polynomial to find roots:

[tex]x^3-5x+5=2x^2-5\\Rearranging:\\x^3-5x+5-2x^2+5=0\\x^3-2x^2-5x+10=0[/tex]

Finding factors by grouping:

[tex](x^3-2x^2)(-5x+10)=0\\Finding\,\,common\,\,terms:\\x^2(x-2)-5(x-2)=0\\(x^2-5)(x-2)=0\\x^2-5=0\,\,and\,\,x-2=0\\x^2=5\,\,and\,\,x=2\\x=\pm \sqrt{5}\,\,and\,\,x=2[/tex]

So, roots of the polynomial [tex]x^3-5x+5=2x^2-5[/tex] are [tex]x=\sqrt{5},x=-\sqrt{5}\,\,and\,\,x=2[/tex]

Keywords: Roots of Polynomial

Learn more about Roots of Polynomial at:

  • brainly.com/question/2568692
  • brainly.com/question/1464739
  • brainly.com/question/1332667
  • brainly.com/question/2364381

#learnwithBrainly