Respuesta :
Acutly its really simple Let's solve your equation step-by-step.3/3(4c+16)=2c+9Step 1: Simplify both sides of the equation.3/3(4c+16)=2c+9Simplify: ((3/3)(4c)+(3/3)(16)=2c+9(Distribute)4c+16=2c+9Step 2: Subtract 2c from both sides.4c+16−2c=2c+9−2c2c+16=9Step 3: Subtract 16 from both sides.2c+16−16=9−162c=−7Step 4: Divide both sides by 2.2c/2=−7/2c=−7/2Answer:c=−7/2
if it is [tex] \frac{3}{3(4c+16)} [/tex]=2c+9, go to AAAAAA
if it is ([tex] \frac{3}{3} [/tex])(4c+16)=2c+9, go to BBBBB
AAAAAAAAA
[tex] \frac{3}{3(4c+16)} [/tex]=2c+9
[tex] \frac{1}{4c+16} [/tex]=2c+9
times 4c+16 to both sides
1=(2c+9)(4c+16)
distribute
1=8c^2+68c+144
minus 1 both sides
0=8c^2+68c+143
use quadratic formula
c=[tex] \frac{-17- \sqrt{3} }{4} [/tex] or [tex] \frac{-17+ \sqrt{3} }{4} [/tex]
BBBBBBBBBBBB
(3/3)(4c+16)=2c+9
1(4c+16)=2c+9
4c+16=2c+9
minus 2c both sides
2c+16=9
minus 16 both sides
2c=-7
divide both sides by 2
c=-7/2
c=-3.5
if it is [tex] \frac{3}{3(4c+16)} [/tex]=2c+9,
c=[tex] \frac{-17- \sqrt{3} }{4} [/tex] or [tex] \frac{-17+ \sqrt{3} }{4} [/tex]
if it is ([tex] \frac{3}{3} [/tex])(4c+16)=2c+9, c=-3.5
if it is ([tex] \frac{3}{3} [/tex])(4c+16)=2c+9, go to BBBBB
AAAAAAAAA
[tex] \frac{3}{3(4c+16)} [/tex]=2c+9
[tex] \frac{1}{4c+16} [/tex]=2c+9
times 4c+16 to both sides
1=(2c+9)(4c+16)
distribute
1=8c^2+68c+144
minus 1 both sides
0=8c^2+68c+143
use quadratic formula
c=[tex] \frac{-17- \sqrt{3} }{4} [/tex] or [tex] \frac{-17+ \sqrt{3} }{4} [/tex]
BBBBBBBBBBBB
(3/3)(4c+16)=2c+9
1(4c+16)=2c+9
4c+16=2c+9
minus 2c both sides
2c+16=9
minus 16 both sides
2c=-7
divide both sides by 2
c=-7/2
c=-3.5
if it is [tex] \frac{3}{3(4c+16)} [/tex]=2c+9,
c=[tex] \frac{-17- \sqrt{3} }{4} [/tex] or [tex] \frac{-17+ \sqrt{3} }{4} [/tex]
if it is ([tex] \frac{3}{3} [/tex])(4c+16)=2c+9, c=-3.5