Use a graphing utility to approximate (to two decimal places) any relative
minima or maxima of the function. (If an answer does not exist, enter DNE.)
f(x) = x(x + 7)
relative minimum
(x, y) =
relative maximum
(x, y) =​

Respuesta :

Answer:

Relative minima at [tex](-\frac{7}{2} , -\frac{49}{4} )[/tex], and relative maxima DNE.

Step-by-step explanation:

The given function is f(x) = x (x + 7) ...... (1)

We have to calculate the relative maxima and relative minima at point (x, y).

Rearranging the function given above we get.

[tex]y= x^{2} +7x = (x + \frac{7}{2} )^{2} -\frac{49}{4}[/tex]

⇒ [tex]y+ \frac{49}{4} = (x + \frac{7}{2} )^{2}[/tex]

Now, this is an equation of parabola having vertex at [tex](-\frac{7}{2} , -\frac{49}{4} )[/tex] and the axis is parallel to positive Y-axis.

Therefore, the function(1) has a relative minima at [tex](-\frac{7}{2} , -\frac{49}{4} )[/tex], and the relative maxima DNE. (Answer)