Answer:
[tex]volume=509.25 dm^{3}[/tex]
Step-by-step explanation:
Curved surface area=[tex]\frac {237.6}{0.6}=396 dm^{2}=2\pi R(R+H)[/tex] where R is radius and H is height
Since H=6R then curved surface area=[tex]2\pi R(R+6R)=14\pi R^{2}[/tex]
Therefore,
[tex]396 dm^{2}=14\pi R^{2}[/tex] and making R the subject
[tex]R=\sqrt {\frac {396}{14\pi}}=\sqrt {(9.003622)}= 3.000604 m[/tex]
Therefore, H=6R=6*3.000604=18.00362 m
[tex]Volume=\pi R^{2}H=\pi*3.000604^{2}*18.00362=509.2453 dm^{3}[/tex]
Therefore, [tex]volume=509.25 dm^{3}[/tex]