A parabola can be drawn given a focus of
(
2
,
8
)
(2,8) and a directrix of
y
=
10
y=10. Write the equation of the parabola in any form.

Respuesta :

Answer:

[tex]y=-\frac{1}{4}(x-2)^{2}+9[/tex]

Step-by-step explanation:

Any point on a given parabola is equidistant from focus and directrix.

Given:

Focus of the parabola is at [tex](2,8)[/tex].

Directrix of the parabola is [tex]y=10[/tex].

Let [tex](x,y)[/tex] be any point on the parabola. Then, from the definition of a parabola,

Distance of [tex](x,y)[/tex] from focus = Distance of [tex](x,y)[/tex] from directrix.

Therefore,

[tex]\sqrt{(x-2)^{2}+(y-8)^{2}}=|y-10|[/tex]

Squaring both sides, we get

[tex](x-2)^{2}+(y-8)^{2}=(y-10)^{2}\\(x-2)^{2}=(y-10)^{2}-(y-8)^{2}\\(x-2)^{2}=(y-10+y-8)(y-10-(y-8))...............[\because a^{2}-b^{2}=(a+b)(a-b)]\\(x-2)^{2}=(2y-18)(y-10-y+8)\\(x-2)^{2}=2(y-9)(-2)\\(x-2)^{2}=-4(y-9)\\y-9=-\frac{1}{4}(x-2)^{2}\\y=-\frac{1}{4}(x-2)^{2}+9[/tex]

Hence, the equation of the parabola is [tex]y=-\frac{1}{4}(x-2)^{2}+9[/tex].