Answer:
15, -3, 54, 2/3
Step-by-step explanation:
We have:
[tex]f(x)=x+3\\g(x)=x^2[/tex]
[tex](f+g)(x)[/tex] can be calculated as
[tex](f+g)(x)=f(x)+g(x)[/tex]
So in this case,
[tex](f+g)(x)=x+3+x^2[/tex]
And substituting x = 3,
[tex](f+g)(3)=3+3+3^2=15[/tex]
[tex](f-g)(x)[/tex] can be calculated as
[tex](f-g)(x)=f(x)-g(x)[/tex]
So in this case,
[tex](f-g)(x)=x+3-x^2[/tex]
And substituting x = 3,
[tex](f+g)(3)=3+3-3^2=-3[/tex]
[tex](fg)(x)[/tex] can be calculated as
[tex](fg)(x)=f(x)g(x)[/tex]
So in this case,
[tex](fg)(x)=(x+3)(x^2)=x^3+3x^2[/tex]
And substituting x = 3,
[tex](fg)(3)=3^3+3\cdot 3^2=54[/tex]
[tex](f/g)(x)[/tex] can be calculated as
[tex](f/g)(x)=\frac{f(x)}{g(x)}[/tex]
So in this case,
[tex](f/g)(x)=\frac{x+3}{x^2}[/tex]
And substituting x = 3,
[tex](f/g)(3)=\frac{3+3}{3^2}=\frac{2}{3}[/tex]