Answer:
Standard form of [tex](x-9)(3x-7) + (3x^{2} - 5x+2)[/tex] [tex]=6x^{2} - 39x + 65[/tex]
Step-by-step explanation:
Here, the given expression is [tex](x-9)(3x-7) + (3x^{2} - 5x+2)[/tex]
Now, simplifying the above expression in parts, we get
[tex](x-9)(3x-7) = 3x^{2} - 7x -27x + 63 = 3x^{2} - 34x + 63[/tex]
hence, combining both parts:
[tex](x-9)(3x-7) + (3x^{2} - 5x+2)[/tex][tex]=(3x^{2} -34x +63) + (3x^{2} - 5x+2)[/tex]
= [tex]6x^{2} - 39x + 65[/tex]
The above expression is of the STANDARD FORM: [tex]ax^{2} +bx + c[/tex]
Hence, the standard form of [tex](x-9)(3x-7) + (3x^{2} - 5x+2)[/tex] [tex]=6x^{2} - 39x + 65[/tex]