15. In AABC if mZA is thirteen less than mzC and mZB is eleven less than four times m
find the measure of each angle.
c ,
mZA =
mZB =
mZC =

Respuesta :

Answer:

[tex]m\angle A=21[/tex]°

[tex]m\angle B=125[/tex]°

[tex]m\angle C=34[/tex]°

Step-by-step explanation:

Let the measure of angle C be [tex]x[/tex]°.

Given:

In triangle ΔABC,

[tex]m\angle A[/tex] is thirteen less than [tex]m\angle C[/tex] and [tex]m\angle B[/tex] is eleven less than four times [tex]m\angle C[/tex]. This gives,

[tex]m\angle A = x-13[/tex]

[tex]m\angle B=4x-11[/tex]

Also, [tex]m\angle C=x[/tex]

Now, for a triangle, the sum of all its interior angles is equal to 180°.

Therefore, [tex]m\angle A + m\angle B + m\angle C=180[/tex]

Plug in all the values and solve for x. This gives,

[tex]x-13+4x-11+x=180\\6x-24=180\\6x=180+24\\6x=204\\x=\frac{204}{6}=34[/tex]

Therefore, measure of angle C is 34°.

Measure of angle A is, [tex]m\angle A=x-13=34-13=21[/tex]°.

Measure of angle B is, [tex]m\angle B=4x-11=4(34)-11=136-11=125[/tex]°.