Answer:
Step-by-step explanation:
Given that the yield point of a particular type of mild steel-reinforcing bar is known to be normally distributed with σ = 100
Modified mean without change of sigma = 8439
Sample size n =25
Std error of sample = [tex]\frac{\sigma}{\sqrt{n} } \\=1.2[/tex]
For 90% confidence interval we use Z critical value since we know population std deviation
Margin of error = [tex]1.645(1.2)\\= 1.974[/tex]
a) Confidence interval
=[tex](8439-1.974, 8439+1.974)\\= (8437.026, 8440.974)[/tex]
b)For 92% critical value changes to 1.75
Confidence interval
=[tex](8439-1.78(1.2), 8439+1.78(1.2))\\=(8436.864, 8441.136)[/tex]