Answer:
[tex]v_{max}=8.2226m/s[/tex]
Explanation:
The problem is solved using the law of conservation of energy,
So
[tex]mgL(1-cos\theta)+\frac{1}{2}mv^2_0=\frac{1}{2}mv^2_{max}[/tex]
[tex]v_{max}=\sqrt{2gL(1-cos\theta)+v^2_0}[/tex]
[tex]v_{max}=\sqrt{2(9.8)(4.57)(1-cos(69.4))+8^2}[/tex]
[tex]v_{max}=8.2226m/s[/tex]