contestada

A student on a piano stool rotates freely with an angular speed of 2.95 rev/s. The student holds a 1.25kg mass in each outstretched arm 0.759m from the axis of rotation. The combined momment of inertia of the student and the stool, ignoring the two masses, is 5.43kg*m^2, a value that remains constant. As the student pulls his arms inward, his angular speed increases to 3.54 rev/s.
a) How far are the masses from the axis of rotation at this time considering the masses to be points
b) calculate the initial and final kinetic energies of the system.

Respuesta :

Answer

given,

angular speed = 2.95 rev/s

mass hold by the student = 1.25 kg

length of the outstretched = r = 0.759 m

momentum of inertia = I = 5.43 kg m²

final angular speed = 3.54 rev/s

a) law of conservation of angular momentum

[tex]\omega_1(2 mr^2 + I ) = \omega_2(2 md^2 + I)[/tex]

[tex]2.95 \times (2\times 1.25 \times 0.759^2 + 5.43 ) =3.54 \times (2\times 1.25 \times d^2 + 5.43)[/tex]

[tex]20.267 = 3.54 (2 \times 1.25 d^2 + 5.43)[/tex]

[tex](2 \times 1.25 d^2 + 5.43) = 5.725[/tex]

[tex]d = \sqrt{\dfrac{0.295}{2\times 1.25}}[/tex]

  d = 0.343 m

b) initial kinetic energy

 [tex]E_1 = \dfrac{1}{2}I_1\omega_1^2[/tex]

 [tex]E_1 = \dfrac{1}{2}(2\times 1.25 \times 0.759^2 + 5.43 )(2.95 \times 2\pi)^2[/tex]

 E_1 = 1180 J

final kinetic energy

 [tex]E_2 = \dfrac{1}{2}I_1\omega_1^2[/tex]

 [tex]E_2 = \dfrac{1}{2}(2\times 1.25 \times 0.343^2 + 5.43 )(3.54 \times 2\pi)^2[/tex]

 E_2= 1415 J      

The initial and final kinetic energies of the given student and piano stool system are respectively; K_i = 1.18 kJ and K_f = 1.42 kJ

What is the initial and final kinetic energy?

We are given;

Initial angular speed; ω_i = 2.95 rev/s

Final angular speed; ω_f = 3.54 rev/s

Mass; m = 1.25 kg

Distance from axis; r_i = 0.759 m

Combined Moment of Inertia; I_s,s = 5.43 kg.m²

A) Initial moment of inertia is;

I_i =  I_s,s + 2m(r_i)²

I_i = 5.43 + 2(1.25 * 0.759)

I_i = 6.87 kg.m²

From conservation of angular momentum, we know that;

Initial angular Momentum = Final Angular momentum

Thus;

I_i * ω_i = I_f * ω_f

I_f = (I_i * ω_i)/ω_f

I_f = (6.87 * 2.95/3.54)

I_f = 5.73 kg.m²

r_f = √(I_f - I_s,s)/(2m))

r_f = √((5.73 - 5.43)/(2 * 1.25))

r_f = 0.35 m

B) Initial kinetic energy is;

K_i = ¹/₂ * I_i * ω_i²

K_i = ¹/₂ * 6.87 * (2.95 * 2π)²

K_i = 1.18 kJ

Final kinetic energy is;

K_f = ¹/₂ *  I_f * ω_f²

K_f = ¹/₂ * 5.73 * (3.54 * 2π)²

K_f = 1.42 kJ

Read more about Initial and Final Kinetic Energy at;