Assume a series solution x(t) =summation ^ infinity _ n = 0 a_n t ^n for the equation x" + X = 0. Show that the recursion formula for the coefficients is a_m + 2= -a _m/(m + l1(m + 2), m = 0, 1, 2,... and that this leads to the general solution x (t) = a_0 (1 - t^2/2! + t^4/4! + ...) +a_1 (t - t^3/3! + t^5/5! + ... = a_0 cos(t) + a_1 sin(t)

Respuesta :

Assume

[tex]x=\displaystyle\sum_{n\ge0}a_nt^n[/tex]

[tex]\implies x''=\displaystyle\sum_{n\ge0}(n+1)(n+2)a_{n+2}t^n[/tex]

Substituting these series into the ODE gives

[tex]\displaystyle\sum_{n\ge0}\bigg[(n+1)(n+2)a_{n+2}+a_n\bigg]t^n=0[/tex]

from which we get

[tex](n+1)(n+2)a_{n+2}+a_n=0\implies a_{n+2}=-\dfrac{a_n}{(n+1)(n+2)}[/tex]

for [tex]n\ge0[/tex], given [tex]x(0)=a_0[/tex] and [tex]x'(0)=a_1[/tex]. Now,

  • if [tex]n=2k[/tex] for integer [tex]k\ge0[/tex], then

[tex]k=0\implies n=0\implies a_0=a_0[/tex]

[tex]k=1\implies n=2\implies a_2=-\dfrac{a_0}{1\cdot2}=(-1)^1\dfrac{a_0}{2!}[/tex]

[tex]k=2\implies n=4\implies a_4=-\dfrac{a_2}{3\cdot4}=(-1)^2\dfrac{a_0}{4!}[/tex]

[tex]k=3\implies n=6\implies a_6=-\dfrac{a_4}{5\cdot6}=(-1)^3\dfrac{a_0}{6!}[/tex]

and so on, with the general rule

[tex]a_{2k}=(-1)^k\dfrac{a_0}{(2k)!}[/tex]

  • and if [tex]n=2k+1[/tex], then

[tex]k=0\implies n=1\implies a_1=a_1[/tex]

[tex]k=1\implies n=3\implies a_3=-\dfrac{a_1}{2\cdot3}=(-1)^1\dfrac{a_1}{3!}[/tex]

[tex]k=2\implies n=5\implies a_5=-\dfrac{a_3}{4\cdot5}=(-1)^2\dfrac{a_1}{5!}[/tex]

[tex]k=3\implies n=7\implies a_7=-\dfrac{a_5}{6\cdot7}=(-1)^3\dfrac{a_1}{7!}[/tex]

[tex]\implies a_{2k+1}=(-1)^k\dfrac{a_1}{(2k+1)!}[/tex]

So the series solution is

[tex]\displaystyle x(t)=\sum_{k\ge0}\bigg(a_{2k}t^{2k}+a_{2k+1}t^{2k+1}\bigg)[/tex]

[tex]x(t)=\displaystyle a_0\sum_{k\ge0}\frac{(-1)^kt^{2k}}{(2k)!}+a_1\sum_{k\ge0}\frac{(-1)^kt^{2k+1}}{(2k+1)!}[/tex]

[tex]\implies x(t)=a_0\cot t+a_1\sin t[/tex]