Answer:
[tex]v_{1f}[/tex] = -0.460 m/s
Explanation:
To solve this problem we will use the concept of moment, write the initial amount when they are united and the end
Initial. Before break away
p₀ = (m + m) v₀
Final. After separating
[tex]p_{f}[/tex] = m [tex]v_{1f}[/tex] + m [tex]v_{2f}[/tex]
p₀ = [tex]p_{f}[/tex]
(m + m) v₀ = m [tex]v_{1f}[/tex] + m [tex]v_{2f}[/tex]
They tell us that when they go together the speed vo = 0.420 m / s and after separating one we will call 2 has a speed of v2f = 1,300 m / s. let's look for each other's speed
m [tex]v_{1f}[/tex] = (2m) vo - m [tex]v_{2f}[/tex]
[tex]v_{1f}[/tex] = 2 v₀ - [tex]v_{2f}[/tex]
[tex]v_{1f}[/tex] = 2 0.420 - 1.300
[tex]v_{1f}[/tex] = -0.460 m/s
The negative sign indicates that it moves to the left