During a routine check of the fluoride content of Gotham City\'s water supply, the following results were obtained from replicate analyses of a single sample: 0.511 mg/L, 0.487 mg/L, 0.511 mg/L, 0.487 mg/L, and 0.519 mg/L Determine the mean and 90% confidence interval for the average fluoride concentration in this sample.
Mean = 0.503mg/L
Find 90% confidence interval

Respuesta :

Answer:

The mean is [tex]x=0.503\frac{mg}{L}[/tex]

The 90% confidence interval is:

[tex]i_{0.90}=[0.492\frac{mg}{L},0.514\frac{mg}{L}][/tex]

Explanation:

1. First organize the data:

[tex]x_{1}=0.487[/tex]

[tex]x_{2}=0.487[/tex]

[tex]x_{3}=0.511[/tex]

[tex]x_{4}=0.511[/tex]

[tex]x_{5}=0.519[/tex]

As there are 5 data, the sample size (n) is n=5

2. Calculate the mean x:

The mean is calculated adding up all the data and divide them between the sample size.

[tex]x=\frac{0.511+0.487+0.511+0.487+0.519}{5}[/tex]

[tex]x=0.503\frac{mg}{L}[/tex]

3. Find 90% confidence interval.

The formula to find the confidence interval is:

[tex]i_{0.90}=[x+/-z_{\frac{\alpha}{2}}*(\frac{d}{\sqrt{n}})][/tex] (Eq.1)

where x is the mean, d is the standard deviation and n is the sample size.

And

[tex]1-\alpha=0.90[/tex]

[tex]\alpha=0.10[/tex]

[tex]\frac{\alpha}{2}=0.05[/tex]

[tex]z_{0.05}=1.645[/tex]

4. Find the standard deviation

[tex]d=\sqrt{\frac{(x_{1}-x)^{2}+(x_{2}-x)^{2}+(x_{3}-x)^{2}+(x_{4}-x)^{2}+(x_{5}-x)^{2}}{n-1}}[/tex]

[tex]d=\sqrt{\frac{(0.487-0.503)^{2}+(0.487-0.503)^{2}+(0.511-0.503)^{2}+(0.511-0.503)^{2}+(0.519-0.503)^{2}}{4}}[/tex]

[tex]d=\sqrt{\frac{(-0.016)^{2}+(-0.016)^{2}+(0.008)^{2}+(0.008)^{2}+(0.016)^{2}}{4}}[/tex]

[tex]d=\sqrt{2.24*10^{-4}}[/tex]

[tex]d=0.015[/tex]

5. Replace values in (Eq.1):

[tex]i_{0.90}=[0.503+/-1.645*(\frac{0.015}{2.236})][/tex]

For the addition:

[tex]i_{0.90}=[0.503+1.645*(\frac{0.015}{2.236})][/tex]

[tex]i_{0.90}=0.514[/tex]

For the subtraction:

[tex]i_{0.90}=[0.503-1.645*(\frac{0.015}{2.236})][/tex]

[tex]i_{0.90}=0.492[/tex]

The 90% confidence interval is:

[tex]i_{0.90}=[0.492,0.514][/tex]